#!/usr/bin/env python3
# —-*- coding: utf-8 -*-

mwman

OHCA survivorship screening (titles + abstracts) with:
- Locked inclusion regex gate
- Hard exclude for BLS/simulation/manikin training
- Minimal negative semantic prototypes (PCI/cath lab, vasopressors, ECMO)
as down-weights only
- Uses pre-fetched abstracts from an ABSTRACT column (no PubMed calls)
- SBERT (MiniLM) if available; TF-IDF fallback otherwise
Outputs:
screen minneg full.csv # all rows, annotated
screen minneg filtered.csv # rows kept after rules

mman

import os

import time

import re

import html

import unicodedata

import json

from typing import List, Dict, Any

import pandas as pd
from tgdm import tgdm

e CONFIG -—-—=-——=-—=——————————

INPUT CSV = "abstract with doi.csv" # your input file with TITLE /
ABSTRACT / etc

OUTPUT PREFIX = "screen minneg" # file prefix for outputs

CONTACT EMAIL = "your.email@example.com" # optional; only used if PubMed
helpers are used

NCBI_API KEY = os.getenv("NCBI_API KEY", "") # optional, speeds up API
rate limits

TOOL NAME = "ohca survivorship screen minneg"

# Decision thresholds
SEMANTIC KEEP THRESHOLD = 0.41
ALLOW REVIEW BYPASS = False
are dropped

raise/lower after calibration
if False, items below threshold

= =

REQUIRE INCLUSION LEXICAL = True # keep only if inclusion regex hits
titlet+abstract

HARD EXCLUDE BLS TRAINING = True # drop simulation/manikin/CPR
training outright

USE TITLE ABSTRACT FOR LEX = True # lexical checks use titletabstract

(recommended)

# Rate limiting & retries (NCBI polite usage, unused now)
DELAY = 0.34
RETRIES = 3

oo TEXT NORMALISATION ——-—=-——————————————-
def norm text(s: str) -> str:
if not isinstance (s, str):
s ="" if s is None else str(s)

s = unicodedata.normalize ("NFKC", s)



n n )

s = s.replace("\n", " ").replace("\zr",
s = re.sub(r"\s+", " ", s).strip()
return s

$ —————— INCLUSION TERMS / REGEX —-———————————————————
INCLUSION TERMS = [

"survivor", "survivors", "survivorship",

"follow-up", "follow up", "post-discharge", "post discharge",

"long-term", "long term", "chronic phase", "late outcome",

"quality of life", "hrqgol", "health-related quality of life",

"life satisfaction”, "well-being", "wellbeing",

"neuropsychological", "neuropsychology",

"cognitive", "cognition", "cognitive impairment", "memory",
"attention",

"executive function", "executive dysfunction", "planning",
"concentration",

"fatigue", "mental fatigue", "sleep", "insomnia", "sleep quality",

"psychological", "anxiety", "depression", "ptsd", "post-traumatic
stress",

"distress", "mental health",

"participation", "community reintegration", "social reintegration",

"return to work", "employment", "work resumption",

"activities of daily living", "adl",

"instrumental activities of daily living", "iadl",

"functional outcome", "functional status",

"rehabilitation", "rehab", "aftercare",

"outpatient clinic", "follow-up clinic",

"caregiver", "carer", "family member", "partner", "spouse",

"relative", "significant other",

"care burden", "caregiver burden", "carer burden",

"support group", "peer support",

"psychosocial", "emotional", "coping", "adjustment",

"daily life", "everyday life", "lifestyle",

def inc phrase to pattern exact first(t: str) -> str:
Turn an inclusion phrase into a regex:
- For multiword / hyphenated phrases, match as written (case-
insensitive),
allowing some flexibility with spaces/hyphens.
- For single words, allow a few plural-ish / variant forms.

mmoan

t = t.strip()

if " " in t or "-" in t:
pat = re.escape(t)
pat = pat.replace(r"\-", r"[-\s]?").replace(r"\ ", r"\s+")

return pat
pluralish = {

"survivor": r"survivor (s)?",

"survivorship": r"survivorship",

"follow—up": r"follow[-\s]?up",
"post-discharge": r"post[-\s]?discharge",
"long-term": r"long[-\s]?term",

"caregiver": r'"care[-\s]?giver(s)?]|carer(s)?",
"aftercare": r"after[-\s]?care",

"rehab": r"rehab",

"outcome": r"outcome(s)?",



"resumption": r"resumption|resume|resuming",

}

return pluralish.get (t, re.escape(t))

INCLUSION REGEX = re.compile (
r"(?21) (" + "|".join(inc_phrase to pattern exact first(t) for t in
INCLUSION_TERMS) + r")"

- HARD EXCLUDE: BLS/simulation/manikin training ----
HARD TRAINING EXCLUDE = re.compile (

r" (?21) \b ("

r"manikin|mannequin|simulation training|skills training|BLS
course|BLS training|"

r"CPR training|dispatcher[-\s]?assisted CPR|AED training|skills
lab|simulation-based"

r'")\b"

# —————_—— MINIMAL NEGATIVE PROTOTYPES (down-weights only) --
POSITIVE QUERIES = [
"Long-term outcomes after cardiac arrest; survivorship; follow-up",
"Quality of life; HRQoL; health-related quality of life",
"Neuropsychological and cognitive outcomes; memory; attention;
executive function",
"Psychological outcomes; anxiety; depression; mental health",
"Return to work; participation; community reintegration; activities
of daily living",
"Rehabilitation; outpatient rehab; aftercare; post-discharge
sequelae",

]

NEGATIVE QUERIES = [

"PCI; percutaneous coronary intervention; cath lab; coronary
angiography",

"Vasopressors; norepinephrine; hemodynamic support; ventilator
settings",

"ECMO; ECLS; cannulation; oxygenator; refractory arrest; transport on
ECMO",

$ ———— OPTIONAL: PubMed helper functions (now unused) ---

import requests

def entrez get(url: str, params: Dict[str, Any]) -> str:
params = dict (params)
if CONTACT EMATL:
params ["email"] = CONTACT EMAIL
if NCBI_API KEY:
params ["api key"] = NCBI API KEY
params ["tool"] = TOOL NAME
for attempt in range(l, RETRIES + 1):
try:

resp = requests.get(url, params=params, timeout=15)
if resp.status code == 200:



return resp.text
except Exception:

pass
time.sleep (DELAY * attempt)
return ""
def esearch title to pmid(title: str, year: str = None) -> str:
if not title.strip():
return ""

qg= f'""{title}"[Title]"’
if year and str(year) .isdigit () :
g += f" AND {year}[DP]"

xml = entrez get(
"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi",
{"db": "pubmed", "term": g, "retmode": "xml", "retmax": 1},

)
if not xml:
return ""
m = re.search (r"<Id> (\d+)</Id>", =xml)
return m.group(l) if m else ""

def efetch pmids(pmids: List[str]) -> Dict[str, Dict[str, Any]]:
out: Dict[str, Dictl[str, Anyl]] = {}
if not pmids:
return out
chunk = 100
for i in range (0, len (pmids), chunk):

sub = pmids[i : i + chunk]

xml = entrez get(
"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi",
{"db": "pubmed", "id": ",".join(sub), "retmode": "xml"},

)
if not xml:
continue
blocks = xml.split ("<PubmedArticle>")
for blk in blocks:
if "<PMID" not in blk:
continue
mpm = re.search (r"<PMID[">]*> (\d+)</PMID>", blk)
if not mpm:
continue
pmid = mpm.group (1)
title = re.search(r"<ArticleTitle>(.*?)</ArticleTitle>", blk,
flags=re.S | re.I)
title

re.sub ("<.*?>", "", title.group(l)).strip() 1if title
else ""
abstr = " ".join(
re.findall (r"<AbstractText [*>]*>(.*?)</AbstractText>",

blk, flags=re.S | re.I)

)

abstr = re.sub ("<.*?>", "", abstr).strip/()

journal = re.search(r"<Title>(.*?)</Title>", blk, flags=re.S

| re.I)

journal re.sub ("<.*?>", "", journal.group(l)) .strip() if
journal else ""

ym = re.search (



r"<JournalIssue>.*?<PubDate>.*? (?:<Year>(\d{4})</Year>|<MedlineDate> (\d{4
ny"y,

blk,

flags=re.S | re.I,

)

nmn

year =
if ym:
for g in ym.groups() :
if g:
year = g
break
mesh = "; ".join(

re.findall (r"<DescriptorName [*>]*>(.*?)</DescriptorName>", blk,
flags=re.S | re.I)
)
out [pmid] = {
"pmid": pmid,
"title": html.unescape(title),

"abstract": html.unescape (abstr),
"mesh": html.unescape (mesh),
"journal": html.unescape (journal),

"year": year,
}

return out

Fommmm e SEMANTIC SCORER (multi-prototype; SBERT -> TF-IDF
fallback) --—-————==""""--—-————
def get semantic scorer multi(positives: List[str], negatives:
List([str]):
try:
from sentence transformers import SentenceTransformer
import numpy as np

model name = "all-MiniLM-L6-v2"
model = SentenceTransformer (model name)

# Encode all prototypes (positive + negative)
all protos = positives + negatives
proto embs = model.encode (
all protos,
show progress bar=False,
convert to numpy=True,
)
pos_embs = proto embs[: len(positives)]
neg embs = proto embs[len(positives) :]

# Centroids
pos_centroid pos_embs.mean (axis=0)
neg centroid = neg embs.mean (axis=0)

def score fn(texts: List[str]) -> List[float]:
# Accept either a single string or a list of strings
if isinstance (texts, str):
txts = [texts]
else:
txts = list (texts)



emb = model.encode (
txts,
show progress bar=False,
convert to numpy=True,

def cos _sim(a, b):
# a: batch of embeddings, b: single vector
denom = (np.linalg.norm(a, axis=-1) * np.linalg.norm(b) +
le-9)
return (a @ b) / denom

pos = cos_sim(emb, pos_centroid)
neg = cos_sim(emb, neg centroid)

# Positive minus a weighted negative similarity
return list(pos - 0.7 * neq)

return score fn, f"SBERT::{model name}"

except Exception:
# TF-IDF fallback if sentence-transformers or numpy not available
from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine similarity

all protos = positives + negatives
vec = TfidfVectorizer (max features=5000, ngram range=(1l, 2))
vec.fit (all protos)

pos _vec = vec.transform(positives) .mean (axis=0)
neg vec = vec.transform(negatives) .mean (axis=0)
def score fn(texts: List[str]) -> List[float]:
if isinstance (texts, str):
txts = [texts]
else:

txts = list (texts)
X = vec.transform(txts)
pos_sim = cosine similarity (X, pos_vec)
neg sim = cosine similarity (X, neg vec)
return list((pos_sim - 0.7 * neg sim).ravel())
return score fn, "TFIDF fallback"
I MAIN PIPELINE —--————-————————————
def main () :
print (f"Loading {INPUT CSV} ...")
df = pd.read csv (INPUT CSV)

# Identify title / year columns

title col = next((c for c in df.columns if c.lower() in ["title",
"ti", "article title"]), None)
if not title col:
title col = next((c for c in df.columns if "title" in c.lower()),

None)



if not title col:
raise RuntimeError ("Could not identify a title column. Please
rename to 'Title' or similar.")

year col = next((c for ¢ in df.columns if c.lower() in ["year",
"pub year", "py"]), None)
if not year col:

year col = next((c for ¢ in df.columns if "year" in c.lower()),
None)
pmid col = next((c for c in df.columns if c.lower() in ["pmid",
"pubmedid", "pubmed id"]), None)

titles = df[title col].astype(str) .map(norm text)
years = df [year col].astype(str) if year col else pd.Series([None] *
len (df))

# Use locally available abstracts instead of fetching from PubMed

abs cands = ["ABSTRACT", "Abstract", "abstract", "ABSTRACT TEXT",
"AbstractText"]
abstract col = next((c for c in df.columns if c in abs cands), None)
if abstract col is None:
abstract col = next((c for ¢ in df.columns if "abstract" in
c.lower()), None)

if abstract col is None:
raise RuntimeError ("Could not find an ABSTRACT column in the
input CSV.")

abs series = df[abstract col].fillna("").astype(str)

df [" abstract"] = abs series.map (norm text)

# Placeholder columns for compatibility with earlier PubMed-based
version

df [H_mesh"] — mn
df [" journal"] = ""
df [" pmid year"] = years

# Lexical checks
if USE TITLE ABSTRACT FOR LEX:
TA = (titles.fillna("") + " " +
df [" abstract"].fillna("")) .map (norm text)
else:
TA = titles.map(norm text)

def matched terms(text: str, pat: re.Pattern) -> str:
return "; ".Jjoin(sorted({m.group(0).lower() for m in
pat.finditer (text) }))

df[" incl lex match"] = TA.apply(lambda s:
bool (INCLUSION REGEX.search(s)))
df [" incl lex terms"] = TA.apply(lambda s: matched terms (s,

INCLUSION REGEX))

if HARD EXCLUDE BLS TRAINING:
df [" hard blstrain exclude"] = TA.apply(lambda s:
bool (HARD TRAINING EXCLUDE.search(s)))
else:
df [" hard blstrain exclude"] = False



# Semantic scorer

score fn, model name = get semantic scorer multi (POSITIVE QUERIES,
NEGATIVE QUERIES)

print (f"Using semantic model: {model name}")

df [" semantic score"] = score fn(df[" abstract"].fillna("").tolist())

# Final keep / drop rules
keep mask = pd.Series([True] * len(df))

if REQUIRE INCLUSION LEXICAL:
keep mask &= df[" incl lex match"]

if HARD EXCLUDE BLS TRAINING:
keep mask &= ~df[" hard blstrain exclude"]

above thresh = df[" semantic score"] >= SEMANTIC KEEP THRESHOLD
if not ALLOW REVIEW BYPASS:
keep mask &= above thresh

df [" final semantic keep"] = keep mask
# Outputs

full out = f£"{OUTPUT PREFIX} full.csv"
filt out = f"{OUTPUT PREFIX} filtered.csv"

print (f"Writing full annotated output to {full out}")
df.to _csv(full out, index=False)

kept df = df[df[" final semantic keep"]].copy ()

print (f"Writing filtered (kept) records to {filt out}
(n={len(kept df)})")

kept df.to csv(filt out, index=False)

# Summary

summary = {

"records": len (df),

"pmids resolved": int (df [pmid col].notna().sum()) if pmid col
else O,

"incl lex matches": int(df[" incl lex match"].sum()),

"hard excluded blstrain": int (df[" hard blstrain exclude"].sum())
if HARD EXCLUDE BLS TRAINING else O,

"kept after semantic": int (df[" final semantic_ keep"].sum()),

"semantic model": model name,

"threshold": SEMANTIC KEEP THRESHOLD,

"outputs": {

"full": full out,
"filtered": filt out,
by
}

print (json.dumps (summary, indent=2))

if name == " main ":
main ()



