
#!/usr/bin/env python3

-*- coding: utf-8 -*-

"""

OHCA survivorship screening (titles + abstracts) with:

- Locked inclusion regex gate

- Hard exclude for BLS/simulation/manikin training

- Minimal negative semantic prototypes (PCI/cath lab, vasopressors, ECMO)

as down-weights only

- Uses pre-fetched abstracts from an ABSTRACT column (no PubMed calls)

- SBERT (MiniLM) if available; TF-IDF fallback otherwise

Outputs:

 screen_minneg_full.csv # all rows, annotated

 screen_minneg_filtered.csv # rows kept after rules

"""

import os

import time

import re

import html

import unicodedata

import json

from typing import List, Dict, Any

import pandas as pd

from tqdm import tqdm

-------------------- CONFIG --------------------

INPUT_CSV = "abstract_with_doi.csv" # your input file with TITLE /

ABSTRACT / etc

OUTPUT_PREFIX = "screen_minneg" # file prefix for outputs

CONTACT_EMAIL = "your.email@example.com" # optional; only used if PubMed

helpers are used

NCBI_API_KEY = os.getenv("NCBI_API_KEY", "") # optional, speeds up API

rate limits

TOOL_NAME = "ohca_survivorship_screen_minneg"

Decision thresholds

SEMANTIC_KEEP_THRESHOLD = 0.41 # raise/lower after calibration

ALLOW_REVIEW_BYPASS = False # if False, items below threshold

are dropped

REQUIRE_INCLUSION_LEXICAL = True # keep only if inclusion regex hits

title+abstract

HARD_EXCLUDE_BLS_TRAINING = True # drop simulation/manikin/CPR

training outright

USE_TITLE_ABSTRACT_FOR_LEX = True # lexical checks use title+abstract

(recommended)

Rate limiting & retries (NCBI polite usage, unused now)

DELAY = 0.34

RETRIES = 3

-------------------- TEXT NORMALISATION --------------------

def norm_text(s: str) -> str:

 if not isinstance(s, str):

 s = "" if s is None else str(s)

 s = unicodedata.normalize("NFKC", s)

 s = s.replace("\n", " ").replace("\r", " ")

 s = re.sub(r"\s+", " ", s).strip()

 return s

-------------------- INCLUSION TERMS / REGEX --------------------

INCLUSION_TERMS = [

 "survivor", "survivors", "survivorship",

 "follow-up", "follow up", "post-discharge", "post discharge",

 "long-term", "long term", "chronic phase", "late outcome",

 "quality of life", "hrqol", "health-related quality of life",

 "life satisfaction", "well-being", "wellbeing",

 "neuropsychological", "neuropsychology",

 "cognitive", "cognition", "cognitive impairment", "memory",

"attention",

 "executive function", "executive dysfunction", "planning",

"concentration",

 "fatigue", "mental fatigue", "sleep", "insomnia", "sleep quality",

 "psychological", "anxiety", "depression", "ptsd", "post-traumatic

stress",

 "distress", "mental health",

 "participation", "community reintegration", "social reintegration",

 "return to work", "employment", "work resumption",

 "activities of daily living", "adl",

 "instrumental activities of daily living", "iadl",

 "functional outcome", "functional status",

 "rehabilitation", "rehab", "aftercare",

 "outpatient clinic", "follow-up clinic",

 "caregiver", "carer", "family member", "partner", "spouse",

 "relative", "significant other",

 "care burden", "caregiver burden", "carer burden",

 "support group", "peer support",

 "psychosocial", "emotional", "coping", "adjustment",

 "daily life", "everyday life", "lifestyle",

]

def inc_phrase_to_pattern_exact_first(t: str) -> str:

 """

 Turn an inclusion phrase into a regex:

 - For multiword / hyphenated phrases, match as written (case-

insensitive),

 allowing some flexibility with spaces/hyphens.

 - For single words, allow a few plural-ish / variant forms.

 """

 t = t.strip()

 if " " in t or "-" in t:

 pat = re.escape(t)

 pat = pat.replace(r"\-", r"[-\s]?").replace(r"\ ", r"\s+")

 return pat

 pluralish = {

 "survivor": r"survivor(s)?",

 "survivorship": r"survivorship",

 "follow-up": r"follow[-\s]?up",

 "post-discharge": r"post[-\s]?discharge",

 "long-term": r"long[-\s]?term",

 "caregiver": r"care[-\s]?giver(s)?|carer(s)?",

 "aftercare": r"after[-\s]?care",

 "rehab": r"rehab",

 "outcome": r"outcome(s)?",

 "resumption": r"resumption|resume|resuming",

 }

 return pluralish.get(t, re.escape(t))

INCLUSION_REGEX = re.compile(

 r"(?i)(" + "|".join(inc_phrase_to_pattern_exact_first(t) for t in

INCLUSION_TERMS) + r")"

)

-------------------- HARD EXCLUDE: BLS/simulation/manikin training ----

HARD_TRAINING_EXCLUDE = re.compile(

 r"(?i)\b("

 r"manikin|mannequin|simulation training|skills training|BLS

course|BLS training|"

 r"CPR training|dispatcher[-\s]?assisted CPR|AED training|skills

lab|simulation-based"

 r")\b"

)

-------------------- MINIMAL NEGATIVE PROTOTYPES (down-weights only) --

POSITIVE_QUERIES = [

 "Long-term outcomes after cardiac arrest; survivorship; follow-up",

 "Quality of life; HRQoL; health-related quality of life",

 "Neuropsychological and cognitive outcomes; memory; attention;

executive function",

 "Psychological outcomes; anxiety; depression; mental health",

 "Return to work; participation; community reintegration; activities

of daily living",

 "Rehabilitation; outpatient rehab; aftercare; post-discharge

sequelae",

]

NEGATIVE_QUERIES = [

 "PCI; percutaneous coronary intervention; cath lab; coronary

angiography",

 "Vasopressors; norepinephrine; hemodynamic support; ventilator

settings",

 "ECMO; ECLS; cannulation; oxygenator; refractory arrest; transport on

ECMO",

]

-------------------- OPTIONAL: PubMed helper functions (now unused) ---

import requests

def entrez_get(url: str, params: Dict[str, Any]) -> str:

 params = dict(params)

 if CONTACT_EMAIL:

 params["email"] = CONTACT_EMAIL

 if NCBI_API_KEY:

 params["api_key"] = NCBI_API_KEY

 params["tool"] = TOOL_NAME

 for attempt in range(1, RETRIES + 1):

 try:

 resp = requests.get(url, params=params, timeout=15)

 if resp.status_code == 200:

 return resp.text

 except Exception:

 pass

 time.sleep(DELAY * attempt)

 return ""

def esearch_title_to_pmid(title: str, year: str = None) -> str:

 if not title.strip():

 return ""

 q = f'"{title}"[Title]'

 if year and str(year).isdigit():

 q += f" AND {year}[DP]"

 xml = entrez_get(

 "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi",

 {"db": "pubmed", "term": q, "retmode": "xml", "retmax": 1},

)

 if not xml:

 return ""

 m = re.search(r"<Id>(\d+)</Id>", xml)

 return m.group(1) if m else ""

def efetch_pmids(pmids: List[str]) -> Dict[str, Dict[str, Any]]:

 out: Dict[str, Dict[str, Any]] = {}

 if not pmids:

 return out

 chunk = 100

 for i in range(0, len(pmids), chunk):

 sub = pmids[i : i + chunk]

 xml = entrez_get(

 "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi",

 {"db": "pubmed", "id": ",".join(sub), "retmode": "xml"},

)

 if not xml:

 continue

 blocks = xml.split("<PubmedArticle>")

 for blk in blocks:

 if "<PMID" not in blk:

 continue

 mpm = re.search(r"<PMID[^>]*>(\d+)</PMID>", blk)

 if not mpm:

 continue

 pmid = mpm.group(1)

 title = re.search(r"<ArticleTitle>(.*?)</ArticleTitle>", blk,

flags=re.S | re.I)

 title = re.sub("<.*?>", "", title.group(1)).strip() if title

else ""

 abstr = " ".join(

 re.findall(r"<AbstractText[^>]*>(.*?)</AbstractText>",

blk, flags=re.S | re.I)

)

 abstr = re.sub("<.*?>", "", abstr).strip()

 journal = re.search(r"<Title>(.*?)</Title>", blk, flags=re.S

| re.I)

 journal = re.sub("<.*?>", "", journal.group(1)).strip() if

journal else ""

 ym = re.search(

r"<JournalIssue>.*?<PubDate>.*?(?:<Year>(\d{4})</Year>|<MedlineDate>(\d{4

}))",

 blk,

 flags=re.S | re.I,

)

 year = ""

 if ym:

 for g in ym.groups():

 if g:

 year = g

 break

 mesh = "; ".join(

re.findall(r"<DescriptorName[^>]*>(.*?)</DescriptorName>", blk,

flags=re.S | re.I)

)

 out[pmid] = {

 "pmid": pmid,

 "title": html.unescape(title),

 "abstract": html.unescape(abstr),

 "mesh": html.unescape(mesh),

 "journal": html.unescape(journal),

 "year": year,

 }

 return out

-------------------- SEMANTIC SCORER (multi-prototype; SBERT -> TF-IDF

fallback) --------------------

def get_semantic_scorer_multi(positives: List[str], negatives:

List[str]):

 try:

 from sentence_transformers import SentenceTransformer

 import numpy as np

 model_name = "all-MiniLM-L6-v2"

 model = SentenceTransformer(model_name)

 # Encode all prototypes (positive + negative)

 all_protos = positives + negatives

 proto_embs = model.encode(

 all_protos,

 show_progress_bar=False,

 convert_to_numpy=True,

)

 pos_embs = proto_embs[: len(positives)]

 neg_embs = proto_embs[len(positives) :]

 # Centroids

 pos_centroid = pos_embs.mean(axis=0)

 neg_centroid = neg_embs.mean(axis=0)

 def score_fn(texts: List[str]) -> List[float]:

 # Accept either a single string or a list of strings

 if isinstance(texts, str):

 txts = [texts]

 else:

 txts = list(texts)

 emb = model.encode(

 txts,

 show_progress_bar=False,

 convert_to_numpy=True,

)

 def cos_sim(a, b):

 # a: batch of embeddings, b: single vector

 denom = (np.linalg.norm(a, axis=-1) * np.linalg.norm(b) +

1e-9)

 return (a @ b) / denom

 pos = cos_sim(emb, pos_centroid)

 neg = cos_sim(emb, neg_centroid)

 # Positive minus a weighted negative similarity

 return list(pos - 0.7 * neg)

 return score_fn, f"SBERT::{model_name}"

 except Exception:

 # TF-IDF fallback if sentence-transformers or numpy not available

 from sklearn.feature_extraction.text import TfidfVectorizer

 from sklearn.metrics.pairwise import cosine_similarity

 all_protos = positives + negatives

 vec = TfidfVectorizer(max_features=5000, ngram_range=(1, 2))

 vec.fit(all_protos)

 pos_vec = vec.transform(positives).mean(axis=0)

 neg_vec = vec.transform(negatives).mean(axis=0)

 def score_fn(texts: List[str]) -> List[float]:

 if isinstance(texts, str):

 txts = [texts]

 else:

 txts = list(texts)

 X = vec.transform(txts)

 pos_sim = cosine_similarity(X, pos_vec)

 neg_sim = cosine_similarity(X, neg_vec)

 return list((pos_sim - 0.7 * neg_sim).ravel())

 return score_fn, "TFIDF_fallback"

-------------------- MAIN PIPELINE --------------------

def main():

 print(f"Loading {INPUT_CSV} ...")

 df = pd.read_csv(INPUT_CSV)

 # Identify title / year columns

 title_col = next((c for c in df.columns if c.lower() in ["title",

"ti", "article_title"]), None)

 if not title_col:

 title_col = next((c for c in df.columns if "title" in c.lower()),

None)

 if not title_col:

 raise RuntimeError("Could not identify a title column. Please

rename to 'Title' or similar.")

 year_col = next((c for c in df.columns if c.lower() in ["year",

"pub_year", "py"]), None)

 if not year_col:

 year_col = next((c for c in df.columns if "year" in c.lower()),

None)

 pmid_col = next((c for c in df.columns if c.lower() in ["pmid",

"pubmedid", "pubmed_id"]), None)

 titles = df[title_col].astype(str).map(norm_text)

 years = df[year_col].astype(str) if year_col else pd.Series([None] *

len(df))

 # Use locally available abstracts instead of fetching from PubMed

 abs_cands = ["ABSTRACT", "Abstract", "abstract", "ABSTRACT_TEXT",

"AbstractText"]

 abstract_col = next((c for c in df.columns if c in abs_cands), None)

 if abstract_col is None:

 abstract_col = next((c for c in df.columns if "abstract" in

c.lower()), None)

 if abstract_col is None:

 raise RuntimeError("Could not find an ABSTRACT column in the

input CSV.")

 abs_series = df[abstract_col].fillna("").astype(str)

 df["_abstract"] = abs_series.map(norm_text)

 # Placeholder columns for compatibility with earlier PubMed-based

version

 df["_mesh"] = ""

 df["_journal"] = ""

 df["_pmid_year"] = years

 # Lexical checks

 if USE_TITLE_ABSTRACT_FOR_LEX:

 TA = (titles.fillna("") + " " +

df["_abstract"].fillna("")).map(norm_text)

 else:

 TA = titles.map(norm_text)

 def matched_terms(text: str, pat: re.Pattern) -> str:

 return "; ".join(sorted({m.group(0).lower() for m in

pat.finditer(text)}))

 df["_incl_lex_match"] = TA.apply(lambda s:

bool(INCLUSION_REGEX.search(s)))

 df["_incl_lex_terms"] = TA.apply(lambda s: matched_terms(s,

INCLUSION_REGEX))

 if HARD_EXCLUDE_BLS_TRAINING:

 df["_hard_blstrain_exclude"] = TA.apply(lambda s:

bool(HARD_TRAINING_EXCLUDE.search(s)))

 else:

 df["_hard_blstrain_exclude"] = False

 # Semantic scorer

 score_fn, model_name = get_semantic_scorer_multi(POSITIVE_QUERIES,

NEGATIVE_QUERIES)

 print(f"Using semantic model: {model_name}")

 df["_semantic_score"] = score_fn(df["_abstract"].fillna("").tolist())

 # Final keep / drop rules

 keep_mask = pd.Series([True] * len(df))

 if REQUIRE_INCLUSION_LEXICAL:

 keep_mask &= df["_incl_lex_match"]

 if HARD_EXCLUDE_BLS_TRAINING:

 keep_mask &= ~df["_hard_blstrain_exclude"]

 above_thresh = df["_semantic_score"] >= SEMANTIC_KEEP_THRESHOLD

 if not ALLOW_REVIEW_BYPASS:

 keep_mask &= above_thresh

 df["_final_semantic_keep"] = keep_mask

 # Outputs

 full_out = f"{OUTPUT_PREFIX}_full.csv"

 filt_out = f"{OUTPUT_PREFIX}_filtered.csv"

 print(f"Writing full annotated output to {full_out}")

 df.to_csv(full_out, index=False)

 kept_df = df[df["_final_semantic_keep"]].copy()

 print(f"Writing filtered (kept) records to {filt_out}

(n={len(kept_df)})")

 kept_df.to_csv(filt_out, index=False)

 # Summary

 summary = {

 "records": len(df),

 "pmids_resolved": int(df[pmid_col].notna().sum()) if pmid_col

else 0,

 "incl_lex_matches": int(df["_incl_lex_match"].sum()),

 "hard_excluded_blstrain": int(df["_hard_blstrain_exclude"].sum())

if HARD_EXCLUDE_BLS_TRAINING else 0,

 "kept_after_semantic": int(df["_final_semantic_keep"].sum()),

 "semantic_model": model_name,

 "threshold": SEMANTIC_KEEP_THRESHOLD,

 "outputs": {

 "full": full_out,

 "filtered": filt_out,

 },

 }

 print(json.dumps(summary, indent=2))

if __name__ == "__main__":

 main()

